

Principle and Benefit

- The hole is cut by helical interpolation; just five sizes of cutter can cut $\varnothing 13$ to $\varnothing 50 \mathrm{~mm}$.
- Even long cutting chip material, such as low carbon steel, stainless steel and soft material can be drilled easily without any trouble of long spiral cutting chips.
- Thanks to the small cutting load of the serrated cutting edge and helical interpolation, low power consumption of the spindle is required.

Two types of NC Helix drill for your options

- Cylindrical shank with helical groove is designed for CNC machines without internal coolant supply.
The rotation of helical groove generates the stream to flush out the cutting chips together with coolant.

- Screw fit type is applicable to fit into almost all extension bar in the market. It has internal coolant through center, the cutting chips can be flushed out from hole together with the coolant.
- Example:
$\varnothing 11$ NC Helix drill can drill $\varnothing 15$ and $\varnothing 20$, just programmed different circular radius $\mathrm{I}=2 \mathrm{~mm}$ and $\mathrm{I}=4.5 \mathrm{~mm}$.

Insert

- Serrated cutting edge makes the cutting chips short and small, it is easily to be flushed out the drilled hole.

NC2032:

- K20F micro grain carbide insert, TiAIN Coated.
- One insert has 2 cutting edges.
- For almost all kind of materials, good for soft and long cutting chip materials!

Ordering Code	Grade	Coating		Dimensions			Screw	Key	
				L	S	Re			
01-N9MX04T002-NC2032	K20F	TiAIN		4.75	1.8	0.2	$\int \mathrm{NS}-18037 / 0.6 \mathrm{Nm}$	1	NK-T6
01-N9MX05T103-NC2032				5.75	2.0	0.3	$\int \mathrm{NS}-20045 / 0.8 \mathrm{Nm}$	1	NK-T6
01-N9MX070204-NC2032				7.5	2.4	0.4	$\int \mathrm{NS}-25045$ / 1.2Nm	1	NK-T7
01-N9MX100306-NC2032				10	3.18	0.6	$\int \mathrm{NS}-30072$ / 2.0 Nm	1	NK-T9
01-N9MX12T308-NC2032				12.5	3.97	0.8	$\int \mathrm{NS}-35080 / 2.5 \mathrm{Nm}$	ρ	NK-T15

Holder

- Cylindrical shank Helical chip-removing groove

- The holder is made by high alloy steel and hardened.
- Special designed helical groove generates coolant chip-removing-stream.
- The coolant is pull-up by the rotating of helical groove and flushes out the cutting chips together with the coolant.
- Designed for the CNC machines with external coolant only.

Ordering Code	Type	Capable of drill dia. mm		Max. Depth	Ød	ØDc	L	L1	Insert type
		Suit for	Possible						
00-99321-010-1320	BC10-HD11-1320	13~15	up to 20	30	10	11	80	40	N9MX04T002
00-99321-012-1525	BC12-HD13-1525	15~20	up to 25	36	12	13	100	50	N9MX05T103
00-99321-016-2030	BC16-HD17-2030	20~25	up to 30	50	16	17	135	65	N9MX070204
00-99321-020-2540	BC20-HD22-2540	25~30	up to 40	60	20	22	170	80	N9MX100306
00-99321-025-3050	BC25-HD27-3050	30~40	up to 50	75	25	27	220	100	N9MX12T308

■ Screw fit cutter

Center coolant

- The holder is made by high alloy steel and hardened, standard screw-fit cutter adapts to almost any kind of the screw-fit tool holder or extension bar in the market.
- Designed for the CNC machines with center coolant.

Ordering Code	Type	Capable of drill dia. mm		$\varnothing \mathrm{Dc}$	ØD1	L	M	Insert type
		Suit for	Possible					
00-99323-010-1320	M05-HD11-1320	13~15	up to 20	11	10	20	M5xP0.8	N9MX04T002
00-99323-012-1525	M06-HD13-1525	15~20	up to 25	13	12	25	M6xP1.0	N9MX05T103
00-99323-016-2030	M08-HD17-2030	20~25	up to 30	17	16	25	M8xP1.25	N9MX070204
00-99323-020-2540	M10-HD22-2540	25~30	up to 40	22	20	30	M10xP1.5	N9MX100306
00-99323-025-3050	M12-HD27-3050	30~40	up to 50	27	25	35	M12xP1.75	N9MX12T308

■ Extension Bar - Steel Made

- TiN coated range is the maximum overhang length.
- With internal coolant hole.

■ Extension Bar - Solid Carbide Made

- TiN coated range is the maximum overhang length.
- With internal coolant hole.

Ordering Code	Type	$\varnothing D$	T	L	M
$00-99801-12 S$	BC12-075M06S	12	25	75	M6xP1.0
$00-99801-16 S$	BC16-090M08S	16	35	90	M8xP1.25
$00-99801-20 S$	BC20-100M10S	20	40	100	M10xP1.5
$00-99801-25 S$	BC25-120M12S	25	50	120	M12xP1.75

Ordering Code	Type	$\varnothing D$	T	L	M
$00-99801-10 \mathrm{~W}$	BC10-100M05W	10	60	100	M5xP0.8
00-99801-12W	BC12-100M06W	12	60	100	M6xP1.0
00-99801-16W	BC16-150M08W	16	80	150	M8xP1.25
00-99801-20W	BC20-200M10W	20	100	200	M10xP1.5
00-99801-25W	BC25-200M12W	25	125	200	M12xP1.75

Application Example

Work Material: Ti6AI4V
Tool holder: 00-99323-016 M08-HD17 Insert: N9MX070204-NC2032

Machine: HAAS VM-3, BT40, 22.5KW

Fig.	D	L	Vc	S	fz	P	Remarks
A	$\varnothing 30.5$	20	60	1200	0.05	2	Counter sink for M20 bolt
B	$\varnothing 20.5$	20	60	1200	0.03	1	For M20 bolt hole
C	$\varnothing 20$	50	60	1200	0.03	1	Cross hole
D	$\varnothing 20$	20	60	1200	0.05	2	Half hole on radius

The NC Helix Drill is programing with "Helical interpolation" on CNC machine, the CNC controller must have 3-axis simultaneously motion function.

$\mathrm{Vc}=$ Cutting Speed	$\mathrm{m} / \mathrm{min}$.	
$\mathrm{fz}=$ Feed rate	$\mathrm{mm} / \mathrm{tooth}$	
$\mathrm{P}=$ Pitch of helical interpolation	mm	
$\mathrm{Dc}=$ Dia. of Drill	mm	
$\mathrm{L}=$ Depth of Drilling	mm	
$\mathrm{S}=$ Spindle Speed	$\mathrm{r} . \mathrm{p} . \mathrm{m}$.	
$\mathrm{F}=$ Table feed rate	$\mathrm{mm} / \mathrm{min}$.	
$\mathrm{I}=$ Circular radius	mm	
D	$=$ Drilling diameter	mm

Formula:

$$
S=\frac{V c \times 1000}{D c X \pi} \quad I=\frac{(D-D c)}{2} \quad F=S \times f
$$

■ Possible in Different Conditions

03680 м. Київ, Машинобудівна 46 тел.: +38044 227-57-73 ф/авт.: +38 044 379-15-33 www.fractalnost.com.ua

